Royal University of Phnom Penh Undergraduate Mathematics Elementary Real Analysis Class of 2024-2025

TD n°1 – Set of real numbers

Exercice 1. We say the set $A \subset \mathbb{R}$ is *bounded* provided A is both bounded above and bounded below. Prove that A is bounded $\iff \exists M > 0, \forall a \in A, |a| \leq M$.

Exercice 2. Determine whether the following sets are bounded below, or bounded above. (Note: You are allowed to use $|\cdot|$ in this exercise.)

- (1). $A = \{\frac{n}{2} + 1 \colon n \in \mathbb{N}\}$
- (2). $B = \{\frac{n}{2} + 1 \colon n \in \mathbb{Z}\}$
- (3). $C = \{\frac{1}{n} : n \in \mathbb{N}\}$
- (4). $D = \{(-1)^n n \colon n \in \mathbb{N}\}$
- (5). $E = \{x \in \mathbb{R} : x^2 \leq 3\}$ (Indication: For the last exercise even though it is tempting to use the $\sqrt{\cdot}$ in order to solve for x, you are advised *not* to use it. This is because up until now we haven't showed that the *number* $\sqrt{3}$ exist or not.)

Exercice 3 (Finding supremum and infimum). (Note: You are allowed to use $\lfloor \cdot \rfloor$ in this exercise.)

- (1). Let $A = (-\infty, 5]$. Prove that $\sup A = 5$.
- (2). Let $B = (2, \infty)$. Prove that $\inf B = 2$.
- (3). Let C = (1, 3]. Prove that sup C = 3 and inf C = 1.
- (4). Let $D = \{\frac{1}{n} : n \in \mathbb{N}\}$. Prove that $\sup D = 1$ and $\inf D = 0$.

Exercice 4. Let $x \in \mathbb{R}$ be a real number. Prove that there exists an integer $n \in \mathbb{N}$ such that nx > 1.

Exercice 5. Let $x, y \in \mathbb{R}$ be real numbers satisfying x < y. Prove that there exists an integer $n \in \mathbb{N}$ such that $x + \frac{1}{n} < y$.

Exercice 6 (Existence of roots).

- (1). Let $A = \{x \in \mathbb{R} : x^2 < 3\}$. Prove that A is bounded above and $(\sup A)^2 = 3$.
- (2). Let $n \in \mathbb{N}$ and $a \in \mathbb{R}$ with a > 0. We denote the set $A = \{x \in \mathbb{R} : x^n < a\}$. Prove that A is bounded above and $(\sup A)^n = a$.

Exercice 7 (Infimum). The goal of this exercise is to prove that any subset of \mathbb{R} that is bounded below has an infimum. Let $A \subset \mathbb{R}$ be a subset that is bounded below. We denote

$$B = \{-a : a \in A\}$$

- (1). Prove that B is bounded above. Let $\beta = \sup B$.
- (2). Prove that $\inf A = -\beta$. (Thus proving that infimum of any set that is bounded below exists.)

Exercice 8 (Existence of integer part function). Let $x \in \mathbb{R}$. Prove that there exists a unique integer $N \in \mathbb{Z}$ satisfying $N \leq x < N + 1$. We denote this integer by $N = \lfloor x \rfloor$.

Exercice 9. Let $x, y \in \mathbb{R}$ with y - x > 1. Prove that there exists an integer $m \in \mathbb{Z}$ such that x < m < y.

Exercice 10. Prove that the set $A = \{\frac{p}{2^n} : p \in \mathbb{Z}, n \in \mathbb{N}\}$ is dense in \mathbb{R} .

Exercice 11. Prove that the set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .